Regulation of sulphate assimilation by glutathione in poplars (Populus tremula3P. alba) of wild type and overexpressing g-glutamylcysteine synthetase in the cytosol

نویسندگان

  • Tanja Hartmann
  • Petra HoÈnicke
  • Markus Wirtz
  • RuÈdiger Hell
  • Heinz Rennenberg
  • Stanislav Kopriva
چکیده

Glutathione (GSH) is the major low molecular weight thiol in plants with different functions in stress defence and the transport and storage of sulphur. Its synthesis is dependent on the supply of its constituent amino acids cysteine, glutamate, and glycine. GSH is a feedback inhibitor of the sulphate assimilation pathway, the primary source of cysteine synthesis. Sulphate assimilation has been analysed in transgenic poplars (Populus tremula3P. alba) overexpressing g-glutamylcysteine synthetase, the key enzyme of GSH synthesis, and the results compared with the effects of exogenously added GSH. Although foliar GSH levels were 3±4-fold increased in the transgenic plants, the activities of enzymes of sulphate assimilation, namely ATP sulphurylase, adenosine 5¢-phosphosulphate reductase (APR), sulphite reductase, serine acetyltransferase, and O-acetylserine (thiol)lyase were not affected in three transgenic lines compared with the wild type. Also the mRNA levels of these enzymes were not altered by the increased GSH levels. By contrast, an increase in GSH content due to exogenously supplied GSH resulted in a strong reduction in APR activity and mRNA accumulation. This feedback regulation was reverted by simultaneous addition of O-acetylserine (OAS). However, OAS measurements revealed that OAS cannot be the only signal responsible for the lack of feedback regulation of APR by GSH in the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of sulphate assimilation by glutathione in poplars (Populus tremula x P. alba) of wild type and overexpressing gamma-glutamylcysteine synthetase in the cytosol.

Glutathione (GSH) is the major low molecular weight thiol in plants with different functions in stress defence and the transport and storage of sulphur. Its synthesis is dependent on the supply of its constituent amino acids cysteine, glutamate, and glycine. GSH is a feedback inhibitor of the sulphate assimilation pathway, the primary source of cysteine synthesis. Sulphate assimilation has been...

متن کامل

Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides.

A wild-type poplar hybrid and two transgenic clones overexpressing a bacterial gamma-glutamylcysteine synthetase in the cytosol or in the chloroplasts were exposed to the chloroacetanilide herbicides acetochlor and metolachlor dispersed in the soil. The transformed poplars contained higher gamma-glutamylcysteine and glutathione (GSH) levels than wild-type plants and therefore it was supposed th...

متن کامل

Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5′-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing γ-ECS, SO, or APR

Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and...

متن کامل

Phytoremediation with transgenic trees.

In the present paper actual trends in the use of transgenic trees for phytoremediation of contaminated soils are reviewed. In this context a current field trial in which transgenic poplars with enhanced GSH synthesis and hence elevated capacity for phytochelatin production are compared with wildtype plants for the removal of heavy metals at different levels of contamination and under different ...

متن کامل

Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress.

Phytoremediation potentials of four poplar lines, Populus nigra (N-SL clone), Populus canescens, and two transgenic P. canescens clones were investigated using in vitro leaf discs cultures. The transgenic poplars overexpressed a bacterial gene encoding gamma-glutamylcysteine synthetase in the cytosol (11ggs) or in the chlopoplasts (6LgI), and therefore, they contained an elevated level of gluta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003